Explaining the black-box predictions of NLP models naturally and accurately is an important open problem in natural language generation. These free-text explanations are expected to contain sufficient and carefully-selected evidence to form supportive arguments for predictions. Due to the superior generative capacity of large pretrained language models, recent work built on prompt engineering enables explanation generation without specific training. However, explanation generated through single-pass prompting often lacks sufficiency and conciseness. To address this problem, we develop an information bottleneck method EIB to produce refined explanations that are sufficient and concise. Our approach regenerates the free-text explanation by polishing the single-pass output from the pretrained language model but retaining the information that supports the contents being explained. Experiments on two out-of-domain tasks verify the effectiveness of EIB through automatic evaluation and thoroughly-conducted human evaluation.
translated by 谷歌翻译
动机,情感和行动是人类活动中相关的基本因素。尽管长期以来一直认为动机和情感是探索人们如何在人类活动中采取行动的核心,但几乎没有研究支持分析人类精神状态与行动之间的关系。我们介绍了第一项研究,该研究研究了基于语言的人类活动中建模动机,情感和行动的生存能力,即逗号(人类活动的认知框架)。在逗号的指导下,我们定义了三个自然语言处理任务(情感理解,动机理解和有条件的动作生成),并通过自动从故事常识中提取样本来建立一个具有挑战性的数据集冰雹。 NLP应用程序的实验结果证明了建模关系的有效性。此外,与现有方法相比,受逗号启发的模型可以更好地揭示动机,情感和行动之间的基本关系。
translated by 谷歌翻译
在这份技术报告中,我们介绍了数字写作助手(高效且智能编辑),该助手通过使用人工智能(AI)技术来促进用户更有效地编写更高质量的文本。以前的写作助理通常提供错误检查的功能(以检测和纠正拼写和语法错误)和有限的文本练习功能。随着大型神经语言模型的出现,一些系统支持自动完成句子或段落。在Effidit中,我们通过提供五个类别的功能来显着扩展写作助手的能力:文本完成,错误检查,文本抛光,关键字到句子(K2S)和云输入方法(Cloud IME)。在文本完成类别中,Effidit支持基于生成的句子完成,基于检索的句子完成和短语完成。相比之下,到目前为止,许多其他写作助理仅提供三个功能中的一两个。对于文本抛光,我们具有三个函数:(上下文感知)短语抛光,句子释义和句子扩展,而其他许多写作助手通常会在此类别中支持一两个功能。本报告的主要内容包括象征的主要模块,实施这些模块的方法以及一些关键方法的评估结果。
translated by 谷歌翻译
最近的工作表明,视觉变压器(VTS)的注意力图在接受自学训练时,可以包含一种语义分割结构,在监督训练时不会自发出现。在本文中,我们明确鼓励这种空间聚类的出现作为一种培训正规化的形式,这种方式包括在标准监督学习中进行自我监督的借口任务。更详细地,我们根据信息熵的空间公式提出了一种VT正则化方法。通过最大程度地减少提议的空间熵,我们明确要求VT生成空间有序的注意图,这是在训练过程中包括基于对象的先验。使用广泛的实验,我们表明,在不同的培训方案,数据集,下游任务和VT体系结构中,提出的正则化方法是有益的。该代码将在接受后可用。
translated by 谷歌翻译
视觉问题应答(VQA)任务利用视觉图像和语言分析来回回答图像的文本问题。它是一个流行的研究课题,在过去十年中越来越多的现实应用。本文介绍了我们最近对AliceMind-MMU的研究(阿里巴巴的编码器 - 解码器来自Damo Academy - 多媒体理解的机器智能实验室),其比人类在VQA上获得相似甚至略微更好的结果。这是通过系统地改善VQA流水线来实现的,包括:(1)具有全面的视觉和文本特征表示的预培训; (2)与学习参加的有效跨模型互动; (3)一个新颖的知识挖掘框架,具有专门的专业专家模块,适用于复杂的VQA任务。处理不同类型的视觉问题,需要具有相应的专业知识在提高我们的VQA架构的表现方面发挥着重要作用,这取决于人力水平。进行了广泛的实验和分析,以证明新的研究工作的有效性。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
视觉变换器(VTS)作为卷积网络(CNNS)的架构范式替代品。与CNN不同,VT可以捕获图像元素之间的全局关系,并且它们可能具有更大的表示容量。然而,缺乏典型的卷积电感偏差使这些模型比普通的CNN更饥饿。实际上,嵌入在CNN架构设计中的某些本地属性,在VTS中应该从样品中学习。在本文中,我们明确地分析了不同的VTS,比较了他们在小型训练制度中的鲁棒性,并且我们表明,尽管在想象中训练时具有可比的准确性,但它们在较小数据集上的性能可能很大程度上不同。此外,我们提出了一种自我监督的任务,可以从图像中提取其他信息,只有可忽略不计的计算开销。这项任务鼓励VTS学习图像内的空间关系,并使VT培训在训练数据稀缺时更加强劲。我们的任务与标准(监督)培训共同使用,它不依赖于特定的架构选择,因此它可以轻松插入现有的VTS。使用与不同的VTS和数据集进行广泛的评估,我们表明我们的方法可以改善(有时显着地)VTS的最终精度。我们的代码可用于:https://github.com/yhlleo/vts-droc。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译